
Evolution of Contagion by COVID-19 in El Salvador Applying SIR-Dynamic
Simulations with the Monte Carlo Method
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The COVID-19 pandemic is at the present in full swing in El Salvador and experience in other
countries forces us to make drastic public and health policy decisions to contain the disease. This
report presents some estimates of the evolution of the disease under the conditions of social distancing
and home quarantine ordered by the authorities. Estimates and projections provide evidence based
on SIR-type mathematical models, applying the Monte Carlo method, to establish and evaluate the
critical phases of the pandemic and its effects, so that more efficient measures and strategies can
be re-evaluated to continue containing the entry into greater critical phases. The time-dependent
SIR was used to calculate differents paramenters of pandemic in the country, using official data
from March 18 up May 4. We found the recovery rate has a value of α̂ = (0.0658 ± 0.0267)1/t

with t measured in days, while the transmision rate is β̂ = (0.108 ± 0.001)1/t, therefore, the basic

reproduction number was calculated with the value of R̂0 = (3.18 ± 0.21). The time-dependent
SIR also was used to calculate the projections for infected cases and recovered cases, however,
we analyzed the implementation of the Monte Carlo method in the numerical solution of infected
cases. The maximum peak of the contagion is calculated using the solutions for infected cases, with
and without applying Monte Carlo method, and it predicts between 1,320 and 1,488 individuals in
infected state, and projecting that the time window for the critical period of the epidemic will be
between the first and second week of June, while it would be attenuating only in mid-August. The
error analysis include the error by the parameters and the prediction error.

Keywords: Covid-19, El Salvador, SIR Model, Monte Carlo method, basic reproduction number, transmission
rate, recovery rate, fatality rate.

I. INTRODUCTION

According to the World Health Organization (WHO),
the epidemiology is the study of the distribution and
determinants of states or events (particularly diseases)
related to public health, and the application of these
studies to the control of diseases and other health prob-
lems. Epidemiological events caused by the outbreak of a
pathogen that eventually will become an epidemic or even
pandemic, can lead to serious threats to public health,
including the loss of many human lives, as well as large
economic and material losses.

The WHO has also defined the COVID-19 pandemic
in 4 phases: i. Import cases phase; ii. Containment
phase; iii. Community contagion phase, and; iv. Sus-
tained transmission phase. El Salvador is already in the
community contagion phase, even when the containment
was dealt with, almost timely, through policies such as
closings of ports, universities and schools, quarantine for
migrants and social isolation. This measures were de-
signed in order to reduce contact rates in the popula-
tion and therefore reduce virus transmission, however the
cases have increased significantly in recent weeks.

Consequently, it seems important to carry out studies
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on the evolution of a pathogen such as this novel Coro-
navirus, which has quickly become a pandemic, and is
putting health systems worldwide in crisis. One of the
most useful methods to study the evolution of the pan-
demic that we are facing, is the development and applica-
tion of deterministic or stochastic mathematical models,
which allows to estimate the evolution of the disease, in
order to correctly guide decision-making to contain and
minimize their effects.

For the study of epidemiological phenomena, mathe-
matical models are used, most of which are a variant of
the SIR model (Susceptible, Infected and Recovered) de-
veloped in 1927 by Kermack and McKendrick [1]. In this
model, the population is divided into different groups,
according to their status during an epidemic outbreak.
This type of model can be simulated using a system of
differential equations or by other methods [2–4].

A variant of the SIR epidemiological model considers
the variables and parameters of the time-dependent equa-
tions, describing the course of the infectious disease, from
a susceptible population (S(t)), which comes into contact
with an infected population (I(t)); and once the infection
period is over, the individual enters in a recovered state
(R(t)), which may be retained for a period of immunity
to the pathogen. The speed of contagion and the way
in which the population is able to self-recover from the
disease or not, determines whether it evolves into an epi-
demic or pandemic, as well as the possibility of further
outbreaks or reinfections, and either the disease remains
endemic or it becomes stationary between the population
[3, 5].
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The SIR model is a basic method used to simulate dif-
ferents scenarios. The transmision rate is heterogeneous
across countries and far exceeds the recovery rate, which
enables a fast spread [6]. In Italy, a Time-Dependent
SIR was proved, and it concludes the usefulness of the
Monte Carlo Methods in order to get better approxima-
tions because the susceptible populations is non-easy to
determinate [7]. In [8] it is defined a simple discrete time
stochastic SIR-type epidemic model to understand the
spread of the COVID-19.

In order to study the evolution of the COVID-19 pan-
demic in El Salvador, we proposed a modified version of
the time-dependent SIR model developed in [9], using a
fatality parameter to analyze the possible evolution sce-
narios of the disease. Then, we use Monte Carlo method
to introduce random variables in our simulation, as an
extension of our research. The SIR model provides a
first approach to mathematical models of epidemiological
prediction, traditionally used to describe other epidemic
outbreaks at a historical and global level [5].

The rest of the article is structured as follows: In Sec-
tion II, we introduce basic concepts of the SIR Model and
the set of differential equations that predict the behavior
of the disease. A review of the time-dependent SIR Model
is presented, considering the analysis of the fatality pa-
rameter in the time-dependent SIR model, and includ-
ing random variables on it. In section III, we analized
the transmision rate, recovered rate, basic reproduction
number, fatality rate and the simulation for the number
of infected people. In section IV we conclude about the
numerical results and we add some suggestions.

II. TIME-DEPENDENT SIR MODEL

A. SIR model with fatality rate

The equations for the typical SIR model including fa-
tality rate are

dS

dt
= −βS (t) I (t)

N
+ ΘαI (t) , (1)

dI

dt
= β

S (t) I (t)

N
− αI (t) , (2)

dR

dt
= (1−Θ)αI (t) , (3)

where, α is the recovery rate, β is the transmission rate
and Θ is the fatality rate, with a value of 0 for non-
fatality and a value of 1 for 100% of fatality over all in-
fected people. In [2] and [10], is presented the SIR Model
considering natural deceased and the deceased caused by
the spread of the COVID-19, nevertheless in our study,
we assume there is not natural deceased in our popula-
tion of interest. The typical SIR models recovered in the
Θ→ 0 limit. Therefore, we can orderly sum it to get:

d(S + I +R)

dt
= 0, (4)

This implies that S(t) + I(t) + R(t) = N , where N is
the total population of interest. The model is known as
Susceptible-Infected-Recovered (SIR) model, which de-
fines three states: the susceptible state is a person with-
out the disease at time t. The infected state is referred to
a sick person or an asymptomatic person at time t who
may infect another healthy person (susceptible). The re-
covered state is referred to a healed person of the disease
at time t. The recovered state is due to an autoimmunity
development or because of a cure. Some authors consider
that in case Θ = 0, the recovered state includes deceased.
Therefore, S(t), I(t) and R(t) represent susceptible, in-
fected, and recovered people at a t time, respectively.

B. Time-Dependent SIR Model

In order to measure the transmission and recovery
rates is necessary to perform a time-dependent SIR
model. The typical SIR model has two constants: β as
the transmission rate, which implies that each individ-
ual has an average of β contacts with random people, or
in a simple way, the number of infected people per day.
The α constant implies how many people are recovered
per day. In general, they do not depend on time (SIR
Model), but both of them are varying on time, so, we
assume that α = α(t) ≥ 0, β = β(t) ≥ 0 and Θ = Θ(t),
with 0 ≤ Θ(t) < 1, where Eqs. (1), (2) and (3) become:

dS

dt
= −β (t)

S (t) I (t)

N
+ Θ(t)α (t) I (t) , (5)

dI

dt
= β (t)

S (t) I (t)

N
− α (t) I (t) , (6)

dR

dt
= (1−Θ(t))α (t) I (t) . (7)

Naturally, Θ is determined from data or fixed to global
values. Its sum is still valid:

d(S + I +R)

dt
= 0, (8)

So, S(t), I(t) and R(t) satisfy Eqs. (1), (2) and (3).
The time discretization 1 implies to rewrite Eqs. (5), (6)
and (7) as:

Si+1 = Si − βi
SiIi
N

+ ΘiαiIi,

Ii+1 = Ii + βi
SiIi
N
− αiIi,

Ri+1 = Ri + (1−Θi)αiIi,

clearly, for T ≥ t we can fix Si−1 ≈ N because at the
beginning of the spread the infected cases appear in small

1 Like dS(t) ≈ S(t+ 1)− S(t) and S(t+ 1) = Si+1 for i ≥ 0
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quantities, for a population of 1000 people, and 10 first
active cases 990/1000 = 0.99, so, reordering:

Si+1 = Si − βiIi + ΘiαiIi, (9)

Ii+1 = Ii + βiIi − αiIi, (10)

Ri+1 = Ri + (1−Θi)αiIi, (11)

Eqs. (9) and (10) give us some clue, because the nu-
merical calculus for Ii+1 and Si+1 do not preserve the
population N although S0 at i = 0 is S0 = N , that im-
plies an independence of the susceptible population in Ii.
So, the main goal is to measure αi and βi, from Eq. 11,
we got the equation for αi:

αi =
1

1−Θi

Ri+1 −Ri

Ii
, (12)

and using 10 and 12, we get βi:

βi =
Ii+1 − Ii + Ri+1−Ri

1−Θi

Ii
, (13)

Eqs. (12) and (13) generate a point-value of α and β for
each t. If we know the historical data from 0 to t, we got
α and β from 0 to t− 1, the values for transmission and
recovery data, respectively. This methodology appears
in the scientist literature for SIR model without fatality
rate [9]. Here, we can define the fatality rate as:

Θi =
di

Ii +Ri
, (14)

where di, which was obtained from officially published
information, represents the number of deaths, besides Ii
is the number of infected people and Ri is the number of
recovered people, at i time each. Θi×100 is the porcent-
age of fatality. The R0 is the basic reproduction num-
ber, defined in the introduction as the average number
of secondary infections that occur when one infective is
introduced into a completely susceptible host population
[2]. Calculated as:

R0 =
β

α
, (15)

this number is very important because it is used to check
whether the disease will become an outbreak (R0 ≥ 1).
In this research, R0 also depends on t as:

R0i =
βi
αi
. (16)

Using Eqs. (12) and (13) is possible to calculate R0

from historical data, thus we got a numerical measure
from 0 to t− 1. The algorithm is shown in Algorithm 1

Algorithm 1: determination of β(t), α(t), Θ(t)
and R0 for Time-Dependent SIR Model

Require: Inf,Rec, Fal Array . The historical data
array to perform.

Ensure: α, β,Θ, R0 . The array for our data of
interest

1: procedure TDSIR(Inf,Rec, Fal) . Definition of
Function

2: Using 14 calculate Θ(t) as array.
3: From Θ(t) calculated, use 12 to calculate α(t)

as array.
4: From Θ(t) calculated, use 13 to calculate β(t)

as array.
5: From β(t) and α(t) calculated, use 16 to

calculate R0(t) as array.
6: return a, b, t, r . α, β,Θ, R0

7: end procedure

C. Determination of β(t), α(t), Θ(t) and R0 for OLS
Methods

Given a set [x1, x2, x3, ..., XN ] of independent variables
and another set [y1, y2, y3, ..., yN ] of dependent variables,
from 1 to N, we can construct a f(x,m) model function,
where m is an adjustable parameter through of residue

ri = yi − f(m,xi) (17)

and the sum of the residue’s squares:

S = Σ(ri)
2
. (18)

The idea of the optimization implies the need to minimize
the sum of the residue’s square in order to get m. For
our case:

β̂(t) = m1t+ b1, (19)

α̂(t) = m2t+ b2, (20)

Θ̂(t) = m3t+ b3, (21)

R̂0(t) = m4t+ b4, (22)

where mj is calculate as

mj =
NΣxy − ΣxΣy

NΣx2 − [Σx]
2 , (23)

and bj as

bj =
ΣyΣx2 − ΣxΣxy

NΣx2 − [Σx]
2 , (24)

The algorithm for determination of lineal adjust for β(t),
α(t), Θ(t) and R0 for OLS method is shown in Algorithm
2.

From Eqs. (9), (10), (11), (19), (20) and (21), we can
predict infected and recovered people at the time t + 1
as:
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Algorithm 2: determination of linear fit for
β(t), α(t), Θ(t) and R0 for OLS method

Require: A, T Array . The data array to perform.
Ensure: m, b . the slope and intercept of mT+b
1: procedure OLS(a, t) . Definition of Function for

OLS
2: Using 23 calculate m
3: Using 24 calculate b
4: return m, b . the m is slope and b is the

intercept
5: end procedure
6: procedure Order(m, b, TF ) . Definition of

Function for new arrays
7: T = [0, TF ] . An array for T
8: Using mi and bi get an array for β(t), α(t) and

Θ(t) through Eqs. 19, 20 and 21.

9: return β̂(t), α̂(t) and Θ̂(t) . As array
10: end procedure

Si+1 = Si −
β̂(t)IiSi

N
+ Θ̂(t)α̂(t)Ii, (25)

Ii+1 = Ii +
β̂(t)IiSi

N
− α̂(t)Ii, (26)

Ri+1 = Ri +
(

1− Θ̂(t)
)
α̂(t)Ii, (27)

using linear fit for transmission, recovery and fatality
rate. We need R0, I0, and N to run the solution for
Time-Dependent SIR Model.

Note that we do not apply the Si ≈ N approximation
in Eq. 25 and Eq. 26, because for T ≥ t, being T a long
period of simulation, we cannot hold that approximation,
although the approximation is valid at the beginning of
the spread.

The algorithm used in our simulations for I(t), S(t),
R(t) of Time-Dependent SIR Model is shown in Algo-
rithm 3.

Algorithm 3: Simulation for I(t), S(t), R(t) For
Time-Dependent SIR Model

Require: I0, R0, F0, D0 . Initial condition for
infected, recovered, deceased people and the day of
the initial conditions.

Require: α̂(t), β̂(t), Θ̂(t) . Array of rates calculated
in Algorithm 2.

Ensure: S, I,R . The array of susceptible, infected
and recovered people.

1: procedure TDSIRM(I0, R0, S0, α̂(t), β̂(t), Θ̂(t))
. Definition of Function for TDSIR arrays

2: Using Eqs. S0, I0, R0 and βD0, αD0,ΘD0

calculate for i+ 1 using 9, 10 and 11.
3: return S(t), I(t) and R(t) for t ≥ D0 . Array

of simulated data for S,I and R.
4: end procedure

D. Time-Dependent SIR Model with Monte Carlo
Method

The Monte Carlo method is an numerical approach for
solving math problems using random variables [11]. Our
proposal considered the addition of a random variable
in I(t), which is defined in Eq. 26. The intention was
to improve our numerical solutions using those methods,
since we can perform a solution for Eqs. 1, 2, 3 for each

β̂(t), α̂(t), Θ̂(t), using linear fit or not; however, it needs
more computational resources, time, etc.

The Monte Carlo method provides a better approach
for introducing random variables in deterministic mod-
els in order to include noise or random behavior in the
simulation of our specific problem [12].

In Eq. 26, we get:

I0 = I0

I1 = I0 +
B0I0S0

N
− α0I0

I2 = I1 +
B1I1S1

N
− α1I1

= I0 +
B0I0S0

N
− α0I0 +

B1I1S1

N
− α1I1

And so on...

New daily infected cases are calculated as:

newi+1 = (Ii+1 − Ii) + (Ri+1 −Ri) (28)

if there are not deaths.
However, the new daily infected cases in the real world

are not easy to predict, for instance, we propose to mod-
ify Eq. 26 as

I ′i = Ii + a(δ1 − δ2), (29)

where the first term of the right side is calculated with
Eq. 26. The second terms are calculated using the stan-
dard deviation of average new cases from historical data,
a represents the deviation standard of new cases, there-
fore, δ1,2 represents the random variable from 0 to 1,
which means that aδ1,2 lies in the [−a, a] interval. Also,
the derivative is:

dI ′

dt
=

dI

dt
(30)

and still satisfies Eq. 2, because the random variable does
not depend on time. The terms a(δ1 − δ2) are only an ini-
tial condition for infected cases of the problem. The new
sets of Time-Dependent SIR with Monte Carlo method
are:

Si+1 = Si −
β̂(t)IiSi

N
+ Θ̂(t)α̂(t)Ii, (31)

Ii+1 = Ii +
β̂(t)IiSi

N
− α̂(t)Ii + a(δ1 − δ2), (32)

Ri+1 = Ri +
(

1− Θ̂(t)
)
α̂(t)Ii, (33)
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This proposal is basically a stochastic-deterministic
model, because the numerical solutions for SIR Model
are perturbed due to a random variable based on the
standard deviation for new daily cases of contagion.

The algorithm used in our simulations for I(t), S(t),
R(t) of Time-Dependent SIR Model with Monte Carlo
method is shown in Algorithm 3.

Algorithm 4: Simulation for I(t), S(t), R(t) For
Time-Dependent SIR Model with Monte Carlo

method
Require: I0, R0, F0, D0 . Initial condition for

infected, recovered, deceased people and the day of
the initial conditions.

Require: α̂(t), β̂(t), Θ̂(t) . Array of rates calculated
in Algorithm 2.

Ensure: S, I,R . The array of susceptible, infected
and recovered people.

1: procedure TDSIRM(I0, R0, S0, α̂(t), β̂(t), Θ̂(t),
a) . Definition of function for TDSIR arrays

2: Using S0, I0, R0, βD0, αD0,ΘD0 and a
calculate for i+ 1 using 31, 32 and 33.

3: return S(t), I(t) and R(t) for t ≥ D0 . Array
of simulated data for S, I and R.

4: end procedure

E. Error Analysis

The error analysis was calculated in two ways:

• Mean and standard deviation for β̂, α̂, θ̂ and R̂0 in
the numerical data and linear fit.

• Predictive error for I(t) in the time-dependent SIR
model and time-dependent SIR model with Monte
Carlo method vs the real infected cases. Using:

Error =
|real − simulated|

real
× 100 (34)

For each Ii obtained from Eqs. 10 and 32.

The standard deviation that measures the dispersion
of the data, relative to its mean value and determines
the variation in each data point, is useful to examine the
accuracy of calculated β and α parameters and its linear
fit. In general, the best fit will be for standard deviation
nearest to zero.

III. NUMERICAL RESULTS

A. Data

The actual data used in this work corresponds to those
officially communicated by the government of El Sal-
vador, from the identification of the first contagion, on

March 18, registering daily infected, recovered and de-
ceased cases until May 7, 2020, when the latest updates
for the simulation were released (see Fig. 1).

B. Transmission and recovery rates

The transmission and recovery rates have been calcu-
lated with Eqs. 19 and 20, as we show in Table I we
choose data from April 4 to May 7 in order to make a
linear fit because it need a R0 finite.

Parameter m
(
1/t2

)
b (1/t)

α̂ 0.00061293 0.0199291

β̂ 4.85504262e-05 1.06489232e-01

TABLE I. slope and intercept from April 4 to May 7

The α inverse is related to the recuperation time of the
disease.

α and β was plotted by using real historical data, pub-
lished by the Government of El Salvador, in Fig. 2. We
can see that β decreases rapidly while α retains its shape
but using the linear fit of α.

C. Fatality rate

The fatality rate and its linear fit, as described in Eq.
21 is shown in Fig. 3 and its numerical result is presented
in Table II. We note a decreasing behavior for Θ̂ and Θ.

Parameter m (1/t) b

Θ̂ -0.00117411 0.07271722

TABLE II. Slope-point for Θ(t) from April 4 to May 7.

We also plot a fatality global rate of 6.9%, in order to
compare to the historical data of deceased in El Salvador.

D. Basic reproduction number

The basic reproduction number is calculated using Eq.
27, which value is calculated by counting at least 15 days
after the first confirmed case (April 4), because R0 de-
pends on β and α, and α is zero for unrecovered people
from Covid-19, however, the first recovered person oc-
currs at April 4. The linear fit of R0 defined as R̂0 is
shown in Table III.
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FIG. 1. Official data from the Goberment of El Salvador. From March 18 up May 4, El Salvador has 742 confirmated of cases.
The 63.34% of the confirmated cases are in the active cases class, 34.63% are recovered people and 2.02% are deceased. The
mean of new positives cases is 15.42 daily confirmated cases, however, the standard deviation is 15.32, that implies a range of
[0 − 30.74] new daily infected cases.
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FIG. 2. Time-Evolution for transmission and recovery rates since March 18. For the linear fit, we choose the first recovered
person until April 4, because R0 is infinite if α = 0

Parameter m (1/t) b

R̂0 -0.01549431 3.56146089

TABLE III. Slope-point for R̂0 from April 4 to May 7, the
first recovered person is determinant for the initial value of
R0. At t = 0, the linear fit predicts a maximum value of
R0 = 3.56.

The Fig. 4 shows the R0 and R̂0 data, there are two
maximum values for R0, but the linear fit predicts a re-
duction of R̂0 according to the last data of R0. There
are four values of R0 in the range R0 ≤ 1, that provide
a decreasing in the spread of the COVID-19 disease.

The error analysis for R0 and R̂0 is discussed in III F.

E. Time-Evolution for TDSIR and TDSIR MC

The time evolution in the spread of the disease is calcu-
lated by two differents ways. For Time-Dependent SIR
model (TDSIR) using Eqs. 10 and 11, and applying a
Time-Dependent SIR model with Monte Carlo (TDSIR
MC) using random variables with Eqs. 32 and 33.

First of all, we have to define the initial susceptible
population, although this value is unnecesary over the
Si ≈ N approximation, where N is the initial popula-
tion, in order to calculate β, α, Θ and R0. However, to
simulate a complete period of the disease is necessary to
make that approximation. The criterion selected are:

• According to Table V, R̂0 varies from 2.97 to 3.39,
stimated for El Salvador case, cionsidering that the
population in containment centers for infected peo-
ple is nearest of 4,600 people. Also it is possible
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FIG. 3. Plot of the Eqs. 21, 14 and 0.069 (global value). The latest data shows a decreasing of the case fatality rate of El
Salvador, keeping on 2% of deceased due to the Covid-19 spread.
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FIG. 4. The time-evolution for the basic reproduction number. In this figure are shown R0 and R̂0, the linear fit predicts a
decreasing on time, and the mean values is on Table V.

to fix about 12,000 susceptible people as an initial
value for N .

• In the Table IV, we can see from Worldometer, the
next values from some of the nearest countries to
El Savador:

Country Total cases population
(million)

percentage
rate of total
infected (%)

Guatemala 967 17.9 0.0005
Honduras 1823 9.9 0.018
Costa Rica 769 5.0 0.015
Panamá 8282 4.3 0.1926
El Salvador 889 6.4 0.013

TABLE IV. Local rates of infected population per country.

El Salvador has about 6.4 million population, ac-
cording to Tab. IV, we have a range of suscep-

tible population using the percentage of total in-
fected cases per country. In the best and worst
cases, we could have a minimun of 320 and a max-
imun of 12, 326 infected cases at the peak of the
curve. However, for simulation purposes, we esti-
mate N = 12, 000 as a susceptible population.

Now, with N = 12, 000 and linear fits of α, β and Θ
tabulated in Tables I and II, we simulated the number of
active and recovered cases for 15 − 150 days via TDSIR
and TDSIR MC.

The Fig. 5 shows the maximum number of active cases
for TDSIR and TDSIR MC obtaining about 11% and
12.4%, respectively, for the range of 83 − 87 days after
the first case of the defined population (12, 000). The
prediction error is analized in section III F. Therefore,
the predicted value for infected cases is according to the
methodology selected.

The Fig. 6 shows the prediction for 10 days before the
last recovered person for TDSIR and TDSIR MC. The
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FIG. 5. Simulation of active cases of Covid-19 in El Salvador. We can see the range of maximum values of active cases through
TDSIR and TDSIRMC method.

prediction error is briefly discussed in section III F.
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FIG. 6. Plot of the recovered people from historical data until
May 4. The simulated cases are shown using the TDSIR and
TDSIR MC method. We can see in the TDSIR case a better
approximation, however, is necessary more future research.

F. Error Analysis

For each parameter, we measured the mean value and
its standard deviation, those values are in Table V.

Parameter Mean STD

α 0.0389 0.0215
α̂ 0.0346 0.009
Θ 0.036 0.012

Θ̂ 0.0445 0.0166
β 0.1080 0.0394

β̂ 0.1077 0.0007
R0 3.0811 2.2697

R̂0 3.1896 0.2191

TABLE V. Mean and STD for parameters

The α and α̂ are distinguishable because α is calculated
via Eq.12 and its data is used to approach a linear fit
defined as α̂, using Eq. 20. That condition produces a
different value for its mean value and standar deviation.
The mean and standar deviation of α implies a range
of [0.0171, 0.0604] as recovery rates, its inverse range is
[16.55, 58.48] days, the inverse is defined as the recovery
time of a sick person. The 58.48 days, imply a big error,
however, 16.55 is according to real data from recovered
people of COVID-19. On the other hand, for α̂ we got
a range of [0.0256, 0.043] for T = [15, 45] days, those
values are out of real recovery time range, although, in
case T = [15− 150] we have a mean of 0.0658 and STD
of 0.0267, that implies a range of [0.0391, 0.0925] and
its inverse has a range of [10.81, 25.57] days of recovery
time for a sick person of COVID-19, with that value an
infected person could become a recovered person in a
range of 10− 25 days.

Now, in case of R0 we got a range of [0.81, 5.35] from
historical data, its mean is 3.08 in El Salvador. In case of
the linear fit, we got a range of [2, 97, 3.41] and a mean of
3.20, both of them are according to international values
of R0 for COVID-19 [13].

Briefly, we discussed the case of β and β̂, bassically, is
defined as transmisión rate or α×R0. Both of them have
a mean of 0.10 people per day, that is 0.10 new infected
for one infected person. We expect that the curve shown
in Fig. 2 has an improvement in the next few days, be-
cause the α(t) < β(t) relation must change to α(t) > β(t)
when we got about the maximum infected value.

In regards to the case of fatality rate, we got a value
of 3.6% and 4.4% calculated as a mean for Θ and Θ̂ ,
respectively. That value implies that the 3.6% or 4.4%
of infected cases migth die. The lastest data of deceased
due to COVID-19 in Fig. 3 shown a 2.2% of case fatality
rate.

The error prediction for infected cases via TDSIR and
TDSIR MC are shown in Fig. 7.
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FIG. 7. Prediction error for infected cases using TDSIR and
TDSIR MC from April 5 to May 4. The TDSIR MC and TD-
SIR present a mean value of 11.8% and 5.9%, respectively.
Error prediction has been based in the historical data of in-
fected cases in El Salvador.

The mean prediction error is an useful tool because it
gives us a variation of cases in the selected range.

For TDSIR and TDSIR MC, the maximum infected
cases are 11.0% and 12.4% of 12, 000 people that are
equivalent to 1, 320 and 1, 488 cases, respectively. The
error prediction for TDSIR has a mean value of 5.9%,
that implies the maximum infected cases are in range
[1242, 1398] individuals, while the mean error for TDSIR
MC is around 11.8%, which indicates the maximum in-
fected cases are in range [1312, 1664] individuals.

In the case of error prediction of recovered people, we
plot the error prediction in Fig. 8. The prediction error
does not present much variation between the TDSIR and
TDSIR MC because the random variable was added in
infected cases from methodology in Eq. 32.
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FIG. 8. Prediction error for recovered cases using TDSIR
and TDSIR MC from April 5 to May 4. The TDSIR MC and
TDSIR presents a maximum value of 30% and 25%, respec-
tively, ignorating the point data of 80% for the second point.
Error prediction was calculated using the historical data for
recovered cases in El Salvador.

IV. CONCLUSIONS

In this work, ana innovative methodology has been pre-
sented, that is capable of taking advantage of the official
data of infected, recovered and deceased, to make an es-
timate of the actual progression of those infected, and
consequently a forecast of the time when the peak of the
epidemic will be reached, and how many people it will
affect at the end. The model used is an original variant
of the well-known SIR model.

The time-dependent SIR model is used in order to
stimate: transmission, recovered and fatality rates, as
also, a simulations of the infected cases using Monte
Carlo methods as a random variable. Using the results
of transmision and recovered rates is possible to mea-
sure the basic reproduction number. By this point, we
preffer the linear fit in order to estimate the rates de-
fined. For recovered rate, we have the numerical results
of α̂ = (0.0658± 0.0267)1/t, with t means days. It im-
plies that the sick person would be in the recovered state
in 10-25 days in El Salvador.

The basic reproduction number R0 calculated applying
TDSIR, and using data from the last 4 weeks is R̂0 =
(3.18± 0.21), it means that one infected person migth
spread another 3 person as average. therefore the current
measures, quarantine and social distancing, taken in the
country will be the key to improve this scenario, or at
least prevent it from worsening.

According to the implemented model and the adjust-
ment of parameters based on the official information pro-
vided by the government of El Salvador, the time win-
dow of the critical period of the epidemic will be be-
tween the first and second week of June, while it would
be attenuating in mid-August, reaching an estimated of
(1, 320± 78) people caculated through of TDSIR simula-
tion or (1, 488± 176) people calculated using the TDSIR
MC simulation, who will posible fall in an infected state,
and 15 per cent of these (198-223 people), falling in a
critical condition, at the peak of the curve, about 83-87
days later than the zero day, which corresponds to the
day of the first contagion detected. The foregoing sug-
gests that with the current measures the disease is being
contained so far.

Briefly, we conclude that the fatality rate calculated
as Θ̂ = (4.4± 1)%, indicates that the pandemic of the
COVID-19 in El Salvador would cause between 45 − 71
deceased after the TDSIR simulation, while after the TD-
SIR MC simulation would cause between 51−80 deceased
at the maximum peak of infected cases. Therefore, the
last data of the fatality rate is 2.2% as it shown in Fig.
3, while the fatality global rate is 6.9%. El Salvador
presents a low fatality rate respect to the global one.

The codes were implemented by Phyton for this re-
port, and it is expected to serve as the basis for periodic
monitoring of the local evolution of the epidemic and
its parameters and of course other kind of deceases. As
more information becomes available, estimates may be-
come more accurate. The lack of some information, such
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as the problems due to under-registry, the decisions made
on the number of daily tests carried out by the Ministry
of Health, and the criteria of those to whom they are

being applied, affect the criteria taken in modeling, and
tends to increase the error by the here estimated param-
eters.
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