
Technical Report 0.2:
WEIGHTED UNIVERSAL ALGEBRAIC CONTROLLERS FOR EPIDEMIC

DYNAMICS IDENTIFICATION AND CONTROL

Fredy Vides
Scientific Computing Innovation Center, UNAH &
Centre for Analysis of Data-Driven Systems, Honduras
E-mail: fredy.vides@unah.edu.hn
Norman Sabillón
Scientific Computing Innovation Center, UNAH &
Centre for Analysis of Data-Driven Systems, Honduras
sabillon rey2004@hotmail.com

CONTENTS

1. Introduction 1
2. Universal Algebraic Controllers for the Propagation Model 2
2.1. Connectivity Matrices 2
2.2. UAC Computation 3
2.3. Weighted UAC shooting methods 5
3. Algorithms 5
4. Numerical Experiments 5
5. Conclusion and Future Directions 12
Acknowledgment 13
References 13

ABSTRACT. In this document, the research work in progress, corresponding to an application of
universal algebraic controllers (in the sense of [5]) to the computation of predictive models for
epidemic propagation in Honduras, is presented. In order to reduce the forcasting fluctuations due
to non-uniform data mesurement techniques, UAC weighted shooting methods are implemented.
Some data-driven numerical predictive simulations for the propagation of COVID-19 in Honduras
during the first semester of 2020, are outlined.

1. INTRODUCTION

The purpose of this document is to present some theoretical and computational techniques
for constrained approximation of data-driven predictive models for the propagation of
COVID-19 in Honduras during the first semester of 2020. These models can be interpreted
as discrete-time systems that can be partially described using the transition block diagram

1

2

(1.1), where the black-box device S needs to be determined in such a way that it can be used
to transform the present state xt into the next state xt+1, according to (1.2).

(1.1)
S

xt xt+1

In this study each entry xt,j of the state vector xt corresponds to the known/predicted
number of confirmed cases of COVID-19 in Department j, for 1 ≤ j ≤ 18, for instance
xt,1 is the estimated number of confirmed cases in Atlántida at stage t. The number xt,19
represents the estimated number of confirmed cases nationwide at stage t. We will first
approach the computation of the state-transtion maps corresponding to the device (1.1),
applying the algebraic methods developed in [5] and [3] to compute the state-transition
matrices that correspond to matrix solvents of difference equations of the form

(1.2) Σ :

{
xt+1 = Ttxt, t ≥ 1
x1 ∈ Σ ⊆ R19n

where Σ ⊆ R19n is the set of valid propagation states for the system with n ∈ Z fixed, and
where the matrices Tt ∈ R18n×18n are to be determined by the relations (1.2) and in some
cases, in addition, need to satisfy the following structural constraints.

(1.3)

{
Tt =

∏19n
j=1

(
I + êj,19n(τ(t,j) − êj,19n)>

)
Kj ◦ τ>(t,j) = τt,j , 1 ≤ j ≤ 19n

where ◦ denotes the Hadamard product, Kj is the jth-row of a connectivity matrix de-
termined by the geographic configuration of Honduras territory under consideration, the
matrices τ(t,j) ∈ R19n×1 are to be determined by (1.2) and 1.3, and where êj,n denotes the
matrices in Cn×1 representing the canonical basis of Cn (the j-column of the n× n identity
matrix I), that are determined by the expression

(1.4) êj,n =
[
δ1,j δ2,j · · · δn−1,j δn,j

]>
for each 1 ≤ j ≤ n, where δk,j is the Kronecker delta determined by the expression.

(1.5) δk,j =

{
1, k = j
0, k 6= j

Once we have computed a pair of systems ΣD,ΣP of the form (1.2), a predictor-descriptor
system ΣPD based on ΣD,ΣP will be computed, applying the techniques presented in §2.
Some algorithms for the computation of ΣPD will be presented in §3. Some numerical
experiments are presented in §4.

2. UNIVERSAL ALGEBRAIC CONTROLLERS FOR THE PROPAGATION MODEL

2.1. Connectivity Matrices. Based on the COVID-19 propagation behavior data available
thus far. Let us consider the connectivity matrixK ∈ R18×18 determined by the expression.

(2.1) K = I + adj(G)

Where adj(G) = [ajk] denotes the adjacency matrix of a graph G = (VG, EG) determined
by the rules.

(2.2) ajk =

{
1, if [vj , vk] ∈ EG, vj , vk ∈ VG
0, otherwise

3

The graph G is determined by the geographical configuration of the Honduras territory,
and belongs to the class represented by graphs like the ones in figura 2.1.

FIGURE 2.1. Geographical connectivity graph corresponding to Hon-
duras departments roads configuration. The red dot represents Francisco
Morazán, the blue dot represents Cortés.

2.2. UAC Computation.

2.2.1. A geographically constrained sequential UAC Descriptor. We start considering a geo-
graphically constrained switched UAC model of the form.

(2.3)
{
xt+1 = Atxt
x0 ∈ R19n×1 , t ≥ 0

Where the matrices At ∈ R19n×19n satisfy the constraints (1.2) and (1.3), and are computed
according to the observed propagation’s behavior by applying lemma 2.1.

Lemma 2.1. Let us consider two propagation states xt, xt+1 ∈ Σ and the connectivity matrix
K ∈ R19n×19n determined by (2.1). There is a matrix Tt ∈ R19n×19n that satisfies (1.2) and (1.3),
if and only if for each 1 ≤ j ≤ 19n, there is τ(t,j) ∈ R19n×1 such that τ>(t,j)xt = xt+1,j and
Kj ◦ τ(t,j) = τ(t,j), with xt+1 = [xt+1,j].

Proof. Let us consider the matrix.

(2.4) Eτ(t,j) = I + êj,19n(τ(t,j) − êj,19n)>

Given x = [xj] ∈ R19n×1, we will have that.

Eτ(t,j)x = (I + êj,19n(τ(t,j) − êj,19n)>x

=

{
τ>(t,j)x, k = j

xk, k 6= j
(2.5)

Let us set Tt =
∏19n
j=1Eτ(t,j) by (1.3). By (2.4) and (2.5), we will have that the matrix Tt ∈

R19n×19n that satisfies (1.2) and (1.3), if and only if for each 1 ≤ j ≤ 19n, there is τ(t,j) ∈
R19n×1 such that τ>(t,j)xt = xt+1,j and Kj ◦ τ(t,j) = τ(t,j). This completes the proof. �

4

By applying UAC techniques developed in [5] one can compute the best linear time invari-
ant approximation of system (2.3), determined by the expression.

(2.6)
{
xt+1 = Axt
x0 ∈ R19n×1 , t ≥ 0

The dynamics matrix A in (2.6) can be computed using algorithm 1.

2.2.2. A geographically free UAC Predictor. A geographically free UAC model of the form.

(2.7)
{
xt+1 = Ttxt
x0 ∈ R19n×1 , t ≥ 0

Where the matrices Tt ∈ R19n×19n are computed according to the observed propagation’s
behavior using the techniques developed in [5, §3.2]. In particular, by applying UAC tech-
niques developed in [5] one can compute the best linear time invariant approximation of
system (2.7), determined by the expression.

(2.8)
{
xt+1 = Sxt
x0 ∈ R19n×1 , t ≥ 0

The dynamics matrix A in (2.8) can be computed using algorithm 2.

2.2.3. Weighted Universal Algebraic Controllers. In this section we will build on the ideas for
real-time forecasting of epidemic trajectories that were presented in [1]. In order to derive
a descriptor system of the form,

(2.9) yt+1 = W

[
S
A

]
yt

where A and S are dynamic matrix solvents of the system identification problems deter-
mined by (2.6) and (2.8), respectively. The matrix W ∈ R19n×38n is a structured nonnega-
tive matrix of the form.

(2.10) W =

u1 0 · · · 0 v1 0 · · · 0

0 u2
. . .

... 0 v2
. . .

...
...

. 0
...

. 0
0 · · · 0 u19n 0 · · · 0 v19n

Where the coefficients uj , vj ≥ 0 are to be determined and need to satisfy the constraints,

(uj , vj) = arg min

N−1∑
k=1

(ê>j,19n((uSytk + vAztk)− xtk+1
))2(2.11)

for some times t1, . . . , tN at which the variable xtk has been observed or measured, and
where ytk , ztk have been generated using systems (2.7) and (2.3), respectively.

5

2.3. Weighted UAC shooting methods. One can apply shooting methods to improve pre-
dictions computed with weighted UAC predictor-descriptor schemes. In this study we
will only consider three terms weighted UAC methods. Although the technique imple-
mented can be extended to higher number of terms. Let us consider three weighted UAC
predictor-descriptor systems of the form:

y
(0)
t+1 = W0

[
S
A

]
y
(0)
t

y
(1)
t+1 = W1

[
S
A

]
y
(1)
t

y
(2)
t+1 = W2

[
S
A

]
y
(2)
t

A weighted UAC shooting method is based on the computation of a nonnegative matrix
Ŵ ∈ R19n×57n that has the following representation

(2.12) Ŵ =
[
Ŵ0 Ŵ1 Ŵ2

]
where each Ŵj has the form.

(2.13) Ŵj =

ŵ

(j)
1 0 · · · 0

0 ŵ
(j)
2

. . .
...

...
. 0

0 · · · 0 ŵ
(j)
19n

The coefficients ŵ(j)

k ≥ 0 satisfy the constaints.

(ŵ
(j)
1 , ŵ

(j)
2 , ŵ

(j)
3) = arg min

N−1∑
k=1

(ê>j,19n((ŵ0y
(0)
tk

+ ŵ1y
(1)
tk

+ ŵ2y
(2)
tk

)− xtk))2(2.14)

for some of the most recent times t1, . . . , tN at which the variable xtk has been observed or
measured

3. ALGORITHMS

We can apply lemma 2.1 combined with the techniques developed in [5] and [3], in or-
der to derive three prototypical data-driven approximation algorithms for the propagation
model that are described by algoritmo 1, algoritmo 2.

4. NUMERICAL EXPERIMENTS

We have created two spreadsheets named COVID19HNHistory.xlsx and HNConnect0.xlsx,
where we have collected the data corresponding to a section of the time series of confirmed
COVID-19 cases in Honduras thus far as reported in [2], and the geographical configura-
tion of Honduran Departments, respectively.
We have written a GNU Octave program named UACDescriptor.m that implements al-
gorithm algoritmo 1 based on the data in COVID19HNHistory.xlsx and HNConnect0.xlsx.
The GNU Octave code of UACDescriptor.m is presented below.

6

Algorithm 1 First Data-driven (descriptor-corrector) approximation algorithm

Data: REAL NUMBER ε > 0, STATE DATA HISTORY: {xt}1≤t≤T , T ∈ Z+ CONNECTIVITY
MATRIX: K ∈ R19n×19n

Result: APPROXIMATE DYNAMIC MATRIX: A ∈ R19n×19n of Σ̃

(1) Compute τj ∈ R19n×1 such that Kj ◦ τ>j = τ>j and

(τ1, . . . , τ19n) = arg min
19n∑
j=1

(xt+1,j − τ>j xt)2

for each 1 ≤ t ≤ T and, with xt, xt+1 ∈ Σ
(2) Set A =

∏19n
j=1Eτj , with Eτj defined by (2.4).

return A

Algorithm 2 Second Data-driven (predictor) approximation algorithm

Data: REAL NUMBER ε > 0, STATE DATA HISTORY: {xt}1≤t≤T , T ∈ Z+

Result: APPROXIMATE STATE TRANSITION MATRIX: S ∈ R19n×19n of Σ̃

(1) Set H = [xt1 · · · xt1+S] with t1 ≥ 1 and t1 + S ≤ T − 1
(2) Compute the lower rank reduced singular value decomposition H = UrSrVr
(3) Compute the state-transition matrix S = UrŜU

∗
r determined by [5, Theorem

3.11.] applying [5, §4.1: Algorithm 4].
return S

Copyright (C) 2020 Fredy Vides
##
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
##
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.

##
function [x,A]=UACDescriptor(ss)
##
Example:
A=UACDescriptor(48);

Author: fredy <fredy@HPCLAB>

7

Created: 2020-03-28

function [x,A]=UACDescriptor(ss)
pkg load io;
x=xlsread (’COVID19HNHistoryFull.xlsx’);

K=xlsread (’HNConnect0.xlsx’);
[p,m]=size(x);
x=x(2:p,:);
x0=x;
ss=min([ss m-1]);
y0=x0(:,1:ss);
y1=x0(:,2:(ss+1));
E=eye(p-1);
A=E;
K=K+E;
for k=1:(p-1)
w=find(K(k,:));
A0=E;
A0(k,w)=lsqnonneg((y0(w,:)).’,y1(k,:).’).’;
A=A0*A;
end
end

We have written a GNU Octave program named UACPredictor.m that implements al-
goritmo 2 based on the data in COVID19HNHistory.xlsx. The GNU Octave code of
UACPredictor.m is presented below.
Copyright (C) 2020 Fredy Vides
##
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
##
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.

##
function [x,A]=UACPredictor(ss,tol)
##
Example:
A=UACPredictor(48,1e-19);

8

Author: fredy <fredy@HPCLAB>
Created: 2020-03-28

function [x,A]=UACPredictor(ss,tol)
pkg load io;
x=xlsread (’COVID19HNHistoryFull.xlsx’);

[p,m]=size(x);
ss=min([ss m-1]);
x=x(2:p,1:(ss+1));
[u,s,v]=svd(x,0);

rk=max(find(diag(s)>=tol));
P=u(:,1:rk);
x0=P’*x;
y0=x0(:,1:ss);
y1=x0(:,2:(ss+1));
for k=1:rk
A(k,:)=lsqnonneg(y0.’,y1(k,:).’).’;
end

A=P*A*P’;
end

We have also written GNU Octave programs named UACWeight.m and UACWeightedShooting.m
that can be used to compute the nonnegative matrices (2.10) and (2.12). The Octave code
of UACWeight.m and UACWeightedShooting.m is presented below.
Copyright (C) 2020 Fredy Vides
##
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
##
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.

##
function W=UACWeight(A0,A1,x0)
##
Example:
[x,A0]=UACPredictor(48,1e-10);
[x,A1]=UACDescriptor(48);
W=UACWeight(A0,A1,x(:,47:49));
A2=[A0;A1];

9

[x(:,49) A0*x(:,48) A1*x(:,48) W*A2*x(:,48)]

Author: fredy <fredy@HPCLAB>
Created: 2020-03-28

function W=UACWeight(A0,A1,x0)
[m,N]=size(x0);
y0=x0(:,1);
y1=x0(:,1);
for k=1:(N-1)
y0=[y0 A0*y0(:,k)];
y1=[y1 A1*y1(:,k)];
end
for j=1:m
c(j,:)=lsqnonneg([y0(j,:).’ y1(j,:).’],x0(j,:).’).’;
end
W=[diag(c(:,1)) diag(c(:,2))];
end

Copyright (C) 2020 Fredy Vides
##
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
##
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.

##
function W=UACWeightedShooting(x,yl,ym,yh)
##

Author: fredy <fredy@HPCLAB>
Created: 2020-03-28

function W=UACWeightedShooting(x,yl,ym,yh)
[m,N]=size(x);
for j=1:m
c(j,:)=lsqnonneg([yl(j,:).’ ym(j,:).’ yh(j,:).’],x(j,:).’).’;
end

10

W=[diag(c(:,1)) diag(c(:,2)) diag(c(:,3))];
end

The weighted UAC predictor-descriptor systems in §2.2.3 and §2.3 can be computed using
the program WeightedUACPredictor.m. The Octave code of WeightedUACPredictort.m
is presented below.
Copyright (C) 2020 Fredy Vides
##
This program is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
##
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
##
You should have received a copy of the GNU General Public License
along with this program. If not, see
<https://www.gnu.org/licenses/>.

##
function [t,x]=WeightedUACPredictor(W,A0,A1,x0,T)
##
Example:
[x,A0]=UACPredictor(72,1e-10);
[x,A1]=UACDescriptor(72);
W0=UACWeight(A0,A1,x(:,70:73));
W1=UACWeight(A0,A1,x(:,71:73));
W2=UACWeight(A0,A1,x(:,72:73));
[t,y0]=WeightedUACPredictor(W0,A0,A1,x(:,72),16);
[t,y1]=WeightedUACPredictor(W1,A0,A1,x(:,72),16);
[t,y2]=WeightedUACPredictor(W2,A0,A1,x(:,72),16);
W=UACWeightedShooting(x(:,[72 73 88 89]),y0(:,[1 2 15 16]),...
y1(:,[1 2 15 16]),y2(:,[1 2 15 16]));
yt=W*[y0;y1;y2];
subplot(311);
j=6;plot([0 1 14 15],x(j,[72 73 88 89]),’c.’,’markersize’,...
16,t,y0(j,:),’r.-’,t,y2(j,:),’b.-’,t,y1(j,:),’g.-’,t,...
yt(j,:),’k.-’);
axis tight
subplot(312);
j=8;plot([0 1 14 15],x(j,[72 73 88 89]),’c.’,’markersize’,...
16,t,y0(j,:),’r.-’,t,y2(j,:),’b.-’,t,y1(j,:),’g.-’,t,...
yt(j,:),’k.-’);
axis tight
subplot(313);

11

j=19;plot([0 1 14 15],x(j,[72 73 88 89]),’c.’,’markersize’,...
16,t,y0(j,:),’r.-’,t,y2(j,:),’b.-’,t,y1(j,:),’g.-’,t,...
yt(j,:),’k.-’);
axis tight

Author: fredy <fredy@HPCLAB>
Created: 2020-03-28

function [t,x]=WeightedUACPredictor(W,A0,A1,x0,T)
x=x0(:,1);
A=[A0;A1];
for k=1:(T-1)
x=[x W*A*x(:,k)];
end
t=0:(T-1);
end

One can run program WeightedUACPredictor.m using the following command lines
in GNU Octave.

>> [x,A0]=UACPredictor(72,1e-10);
>> [x,A1]=UACDescriptor(72);
>> W0=UACWeight(A0,A1,x(:,70:73));
>> W1=UACWeight(A0,A1,x(:,71:73));
>> W2=UACWeight(A0,A1,x(:,72:73));
>> [t,y0]=WeightedUACPredictor(W0,A0,A1,x(:,72),16);
>> [t,y1]=WeightedUACPredictor(W1,A0,A1,x(:,72),16);
>> [t,y2]=WeightedUACPredictor(W2,A0,A1,x(:,72),16);
>> W=UACWeightedShooting(x(:,[72 73 88 89]),y0(:,[1 2 15 16]),...
> y1(:,[1 2 15 16]),y2(:,[1 2 15 16]));
>> yt=W*[y0;y1;y2];
>> subplot(311);
>> j=6;plot([0 1 14 15],x(j,[72 73 88 89]),’c.’,’markersize’,...
> 16,t,y0(j,:),’r.-’,t,y2(j,:),’b.-’,t,y1(j,:),’g.-’,t,...
> yt(j,:),’k.-’);
>> axis tight
>> subplot(312);
>> j=8;plot([0 1 14 15],x(j,[72 73 88 89]),’c.’,’markersize’,...
> 16,t,y0(j,:),’r.-’,t,y2(j,:),’b.-’,t,y1(j,:),’g.-’,t,...
> yt(j,:),’k.-’);
>> axis tight
>> subplot(313);
>> j=19;plot([0 1 14 15],x(j,[72 73 88 89]),’c.’,’markersize’,...
> 16,t,y0(j,:),’r.-’,t,y2(j,:),’b.-’,t,y1(j,:),’g.-’,t,...
> yt(j,:),’k.-’);
>> axis tight

The previous lines produce the graphical outputs illustrated in figura 4.1.

12

FIGURE 4.1. 16 days forecast for confirmed cases, the UAC weighted shoot-
ing method’s prediction is represented by the black dotted line, the cyan
dots represent observed shooting data. Cortés cases forecast (top). Fran-
cisco Morazán cases forecast (middle). Nationwide cases forecast (bottom).

The Octave programs developed thus far for this project together with the data spread-
sheets, are available on the project’s repository at [4].

5. CONCLUSION AND FUTURE DIRECTIONS

The results in §2 can be used to derive predictive numerical simulation algorithms like
algoritmo 1, algoritmo 2.
Thus far, given the present state and conditions of available data, by applying algorithms
1 and 2, one can get very good predictions in a time span that ranges from two to three
weeks in the future.
Once more accurate COVID-19 behavior data become available, we plan to extend algo-
ritmo 1 and algoritmo 2, to describe other aspects of the COVID-19 propagation in Hon-
duras, for longer time periods. An extension of the ideas presented in this document to
more complex geographical configuration graphs will be the subject of future communica-
tions.
The application of the techniques developed in [5] together with the algorithms presented
in §3 to the study of other subjects of national interest, will also be the subject of future
communications.

13

ACKNOWLEDGMENT

The structure preserving matrix computations needed to implement algoritmo 1 and al-
goritmo 2., were performed with the technology of universal algebraic controllers devel-
oped in the Scientific Computing Innovation Center (CICC-UNAH) of the National Au-
tonomous University of Honduras.
The first author would like to thank Rosible Pacheco, Josué Molina, Luis Flores and Fabri-
cio Murillo, for several interesting comments that have been very helpful for the prepara-
tion of this document.

REFERENCES

[1] Gerardo Chowell, R Luo, K Sun, Kimberlyn Roosa, Amna Tariq, and C Viboud. Real-time forecasting of
epidemic trajectories using computational dynamic ensembles. Epidemics, 30:100379, 12 2019.

[2] Sinager. Despacho de comunicaciones y estrategia presidencial, 2020. https://covid19honduras.org/.
[3] F. Vides. On uniform connectivity of algebraic matrix sets. Banach J. Math. Anal., 13(4):918–943, 2019.
[4] F. Vides. Gnu octave function and spreadsheets for the predictive simulation of covid-19 propagation in

honduras, 2020. https://github.com/cadds-lab/EpidemicDynamics.
[5] F. Vides. Universal algebraic controllers and system identification. Submitted, 2020.

	1. Introduction
	2. Universal Algebraic Controllers for the Propagation Model
	2.1. Connectivity Matrices
	2.2. UAC Computation
	2.3. Weighted UAC shooting methods

	3. Algorithms
	4. Numerical Experiments
	5. Conclusion and Future Directions
	Acknowledgment
	References

